
Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

1

Design Patterns
The Timeless Way of Coding

Designed and Presented by
Dr. Heinz Kabutz

Illustrations by Edith Sher

Copyright © 2001 Maxkab Solutions CC – All Rights Reserved

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

2

1: Introduction to Patterns

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

3

Who am I?
• YAJP
• Trainer of Java and Design Patterns

Courses in various places of the world
• PhD in Computer Science from UCT
• Java Consultant
• Publish Java newsletter “Made in South

Africa” that is reaching 97 countries
– This raises South Africa’s technological image

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

4

Your Expectancies
• Don’t expect

– Polished speaker, wearing a suit
– Java Guru (“The leading Java guy in the country” ;-)

– Salesman

• Do expect
– Someone who is passionate about

programming and the problems programmers
face

– Someone who prefers technology to meetings
– Someone who loves using good Object-

Oriented principles, and who is committed to
teaching others how to do the same.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

5

My Hopes for This Talk
• To find out which JUG is friendlier: Cape

Town or Durban?
• To make new contacts in Durban
• To get you addicted to Design Patterns

– Drug dealer scum have good business
strategy

• To raise awareness of how Maximum
Solutions can help you:
– Training (Java and Design Patterns)
– Consulting / Mentoring / Coaching
– Programming

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

6

Questions
• Please please please please ask

questions!
• There are some stupid questions

– They are the ones you didn’t ask
– Once you’ve asked them, they are not stupid

anymore
• Assume that if you didn’t understand

something that it was my fault
• The more you ask, the more everyone

learns (including me)

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

7

What is a Design Pattern?
• A design idea that has been applied many

times, with success
• Designs that result in reusable code
• In our case, we will look at Object Oriented

Design Patterns

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

8

Vintage Wines
• Design Patterns are like good red wine

– You cannot appreciate them at first
– As you study them you learn the difference

between plonk and vintage
– As you become a connoisseur you experience

the various textures you didn’t notice before
• Warning: Once you are hooked,

you will no longer be satisfied
with plonk!

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

9

Why are patterns so important?
• Provide a view into the brains

of OO experts
• Help you understand existing

designs
• Patterns in Java, Volume 1,

Mark Grand writes
– "What makes a bright, experienced

programmer much more productive than a
bright, but inexperienced, programmer is
experience."

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

10

Coding Patterns
• We have all seen patterns in code:

– for (int i=0; i<names.length; i++) ...

– common data structures, like linked list
• This is the way we “do things”
• Most courses teach the syntax of a

language, not the semantics
• Design is normally learnt through

experience

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

11

Introduction
• For this talk I assume you have a good

understanding of the basic OO concepts of
encapsulation, abstraction, composition
and inheritance

• Should be able to follow basic UML class
diagrams

• Design Patterns is the recommended text;
additional references are shown where
applicable

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

12

Textbook – “Design Patterns”
• “Design Patterns” book by

Gang of Four (GoF)
• Contains a collection of

basic “patterns” that
experienced OO developers use regularly

• Cannot proceed very far in Java / C++ /
VB.NET without understanding patterns

• Facilitates better communication
• Based on work of renegade architect

Christopher Alexander in “The Timeless
Way of Building”

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

13

Pattern Structure
• Classic

– Intent
– Also Known As
– Motivation
– Applicability
– Structure
– Participants
– Collaborations
– Consequences
– Implementation
– Sample Code
– Known Uses
– Related Patterns

• This Course
– Intent
– Also Known As
– Motivation
– Sample Code
– Applicability
– Structure
– Consequences
– Known Uses In

Java
• The other

sections are left
for self-study

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

14

What’s in a name?
The Timeless Way of Building

The search for a name is a fundamental
part of the process of inventing or

discovering a pattern.
So long as a pattern has a weak name, it

means that it is not a clear concept,
and you cannot tell me to make “one”.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

15

Why do we need a diagram?
The Timeless Way of Building

If you can’t draw a [class] diagram of it,
it isn’t a pattern

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

16

Misuse of Design Patterns
• Patterns Misapplied

– “design” patterns should not be used during
analysis

• Cookie Cutter Patterns
– patterns are generalised solutions

• Misuse By Omission
– reinventing a crooked wheel

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

17

Summary
• Object Orientation is here to stay
• Design Patterns will fast-track you in

learning how to design with objects

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

18

2: Composite

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

19

Composite
• Intent

– Compose objects into tree structures to
represent part-whole hierarchies. Composite
lets clients treat individual objects and
compositions of objects uniformly.

• Intent according to Vlissides
– Assemble objects into tree structures.

Composite simplifies clients by letting them
treat individual objects and assemblies of
objects uniformly.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

20

Motivation: Composite

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

21

Sample Code: Contact
public abstract class Contact {
 public void add(Contact contact) {}
 public void remove(Contact contact) {}
 public abstract void sendMail(String msg);
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

22

Sample Code: Person
public class Person extends Contact {
 private final String email;
 public Person(String email) {
 this.email = email;
 }

 public void sendMail(String msg) {
 System.out.println("To: " + email);
 System.out.println("Msg: " + msg);
 System.out.println();
 }
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

23

Sample Code: DistributionList
import java.util.*;
public class DistributionList extends Contact {
 private List contacts = new LinkedList();
 public void add(Contact contact) {
 contacts.add(contact);
 }
 public void remove(Contact contact) {
 contacts.remove(contact);
 }

 public void sendMail(String msg) {
 Iterator it = contacts.iterator();
 while(it.hasNext()) {
 ((Contact)it.next()).sendMail(msg);
 }
 }
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

24

Sample Code: MailClient
public class MailClient {
 public static void main(String[] args) {
 Contact tjsn = new DistributionList();
 tjsn.add(new Person("john@aol.com"));
 Contact students = new DistributionList();
 students.add(new Person("amrita@intnet.mu"));
 tjsn.add(students);
 tjsn.add(new Person("anton@bea.com"));
 tjsn.sendMail(
 "welcome to the 5th edition of ...");
 }
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

25

> java MailClient 
To: john@aol.com
Msg: welcome to the 5th edition of ...

To: amrita@intnet.mu
Msg: welcome to the 5th edition of ...

To: anton@bea.com
Msg: welcome to the 5th edition of ...

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

26

Applicability: Composite
• Use the Composite pattern when

– you want to represent part-whole hierarchies of
objects.

– you want clients to be able to ignore the
difference between compositions of objects
and individual objects.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

27

Structure: Composite

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

28

Consequences: Composite
• Benefits

– defines class hierarchies consisting of primitive
objects and composite objects

– makes the client simple
– makes it easier to add new kinds of

components
• Drawbacks

– can make your design overly general

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

29

Known Uses: Composite
• java.awt.Component
• java.io.File

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

30

Questions: Composite
• The Composite Pattern is one of the

most commonly used patterns in Object
Orientation. How would you go about
designing the Mailing List example
without this patterns, i.e. without having a
common superclass?

• What maintenance issues would this
cause?

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

31

Exercises: Composite
• Add isLeaf():boolean and

children():Iterator methods to Contact.
children() returns an Iterator of all
children of the current contact (not
recursively). Leaves would return a
NullIterator (which is a Singleton).

• Write an external ContactIterator class
that returns all the leaves below a
Contact.

• Map the Contact example to a relational
database.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

32

3: Singleton

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

33

Singleton
• Intent

– Ensure a class only
has one instance, and
provide a global point
of access to it.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

34

Motivation: Singleton
• It’s important for some classes to have

exactly one instance, e.g. SecurityModule

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

35

Sample Code: Singleton
public class SecurityModule {
 private static SecurityModule instance =
 new SecurityModule();

 public static SecurityModule getInstance() {
 return instance;
 }

 private SecurityModule() {
 loadPasswords();
 }

 public UserContext login(String username,
 String password) {
 return new UserContext(username, password);
 }

 // etc.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

36

Applicability: Singleton
• Use the Singleton pattern when

– there must be exactly one instance of a class,
and it must be accessible to clients from a
well-known access point.

– when the sole instance should be extensible
by subclassing, and clients should be able to
use an extended instance without modifying
their code.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

37

Structure: Singleton

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

38

Consequences: Singleton
• Benefits

– Controlled access to sole instance
– Reduced name space
– Permits refinement of operations and

representation
– Permits a variable number of instances
– More flexible than class operations

• Drawbacks
– Overuse can make a system less OO.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

39

Known Uses in Java: Singleton
• java.lang.Runtime.getRuntime()
• java.awt.Toolkit.getDefaultToolkit()

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

40

Questions: Singleton
• The pattern for Singleton uses a private

constructor, thus preventing extendability.
What issues should you consider if you
want to make the Singleton “polymorphic”?

• Sometimes a Singleton needs to be set up
with certain data, such as filename,
database URL, etc. How would you do
this, and what are the issues involved?

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

41

Exercises: Singleton
• Turn the following class into a

Singleton:

public class Earth {
 public static void spin() {}
 public static void warmUp() {}
}

public class EarthTest {
 public static void main(String[] args) {
 Earth.spin();
 Earth.warmUp();
 }
}

• Now change it to be extendible

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

42

4: Value Object

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

43

Value Object
• Intent

– Efficiently transfer remote, fine-grained data by
sending a coarse-grained view of the data.

• Also known as
– Data Transfer Object, Replicate Object

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

44

Motivation: Value Object

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

45

Sample Code: Value Object
public class ProjectVO implements Serializable {
 private String projectId;
 private String projectName;
 private String managerId;
 // ...
 ProjectVO(String projectId,
 String projectName, ...) {
 this.projectId = projectId;
 this.projectName = projectName;
 this.managerId = managerId;
 // ...
 }
 public String getProjectId() {
 return projectId;
 }
 public void setProjectId(String projectId) {
 this.projectId = projectId;
 }
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

46

Sample Code: Value Object
public class ProjectBean implements EntityBean {
 public String projectId;
 public String projectName;
 public String managerId;
 ...
 public ProjectVO getProjectData() {
 return new ProjectVO(projectId,
 projectName, ...);
 }
 public void setProjectData(ProjectVO data) {
 // version control would be necessary and
 // only changed values should be set
 projectId = data.projectId;
 projectName = data.projectName;
 ...
 }
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

47

Applicability: Value Object
• Use value objects

– to provide a coarse-grained view of remote,
fine-grained data.

– as a local-access alternative to entity beans.
• Value object represents a business object without

business methods
• Only provides methods to read its data – ideal

candidate for local access

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

48

Structure: Value Object

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

49

Consequences: Value Object
• Benefits

– Simplifies entity bean and remote interface
– Transfers more data in fewer remote calls
– Reduces network traffic

• Drawbacks
– May introduce stale value objects
– May increase complexity due to

synchronization and version control

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

50

Implementation: Value Object
• Updatable Value Objects

– contain setData() as well as getData()
• Multiple Value Objects
• Entity inherits Value Object

– Reduces duplicate code
• Generic Value Object factories

– Value Object would then just be an interface
– Concrete Value Object generated by reflection

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

51

Known Uses: Value Object
• Petstore example

– CustomerEJB aggregates values into
ContactInformation

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

52

Questions: Value Object
• Value Object introduces additional

complexity into your application, with stale
data, etc. How would you break up an
Invoice class (containing Address,
LineItems, etc.) into Value Objects? Would
you use Entity Beans? If so, what would
you use them for? How would Value
Objects come into play?

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

53

Exercises: Value Object
• Change ProjectBean in motivation to

extend ProjectVO.
• Split the ProjectVO shown earlier into

ProjectDetailsVO and
ProjectStatusVO. You will have to
change the value objects into interfaces
and make a ValueObjectFactory class
that creates them.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

54

Exercises: Value Object
• Design a Project VO that contains a

ProjectStatus VO Proxy which is
retrieved lazily using the Virtual Proxy
pattern.

• Design an Iterator that retrieves
ProjectTask VOs lazily.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

55

5: Conclusion
• Design Patterns will help you write real

Object Orientated code
• The textbook by GoF is very intimidating

– http://www.javaspecialists.co.za/books.html
• Best way to learn Design Patterns is

through a course:
– http://www.javaspecialists.co.za

• Questions …
• Email: heinz@javaspecialists.co.za

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

56

Design Patterns Cape Town

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

57

Design Patterns Germany

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

58

Design Patterns London

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

59

Design Patterns

 Mauritius

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

60

Design Patterns Estonia
at –18o Celsius

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

61

What Next:
Design Patterns Course in

Durban?

Please contact heinz@javaspecialists.co.za
(083) 340-5633

